If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-18=5k
We move all terms to the left:
2k^2-18-(5k)=0
a = 2; b = -5; c = -18;
Δ = b2-4ac
Δ = -52-4·2·(-18)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-13}{2*2}=\frac{-8}{4} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+13}{2*2}=\frac{18}{4} =4+1/2 $
| 11+2g=2g(g-15) | | 20=7/5-x | | 4^x-6=64 | | 8^3x=12 | | 2(x-5)-23=3-2x | | 20^x+3=14 | | x-8=4-3 | | 6.3a-4=8+a | | 7x2+3x+4+7x2+3x+4= | | 10w-31w+15=0 | | 2+4x=5(-x+8)-83 | | (x+4)(x+8)(x+11)+20=0 | | 9r^2-36=45 | | -(5-t)=0937t-12t+5(14+3t) | | m=-4(5)+5 | | 10-q=9+3q | | m=-4m+5 | | F(x)=x2-225 | | 2p+5/3=1 | | 8v+8v=2v+42 | | 29=2+3r | | x=12/13=5/13 | | Y=3x^2+24x+36 | | 16=2t-4 | | 48-15d=18 | | Y(x)=3x^2+24x+36 | | -(5-t)=0(37t-12t+5(14+3t) | | K(x)=3x^2+24x+36 | | 5^(2x)-26×5^(x)+25=0 | | 2=14+3n | | 1/3e-9=5 | | 0=x^2+(128x/x^2) |